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Abstract
The primary defense against cross site scripting attacks in web ap-
plications is the use of sanitization, the practice of filtering un-
trusted inputs. We analyze sanitizer use in a shipping web appli-
cation with over 400,00 lines of code, one of the largest applica-
tions studied to date. Our analysis reveals two novel problems: in-
consistent sanitization and inconsistent multiple sanitization. We
formally define these problems and propose SCRIPTGARD: a sys-
tem for preventing such problems automatically matching the cor-
rect sanitizer with the correct browser context. While command in-
jection techniques are the subject of intense prior research, none
of the previous approaches consider both server and browser con-
text, none of them achieve the same degree of precision, and many
other mitigation techniques require major changes to server side
code. Our approach, in contrast, can be incrementally retrofitted to
legacy systems. We show how to provide an aid to testers during
development. Finally we sketch how SCRIPTGARD can be used as
a runtime mitigation technique.

1. Introduction
Applications that render HTML on a web server for consumption
by a web browser are explosively popular, but they introduce new
classes of security bugs. The most common attacks are cross-site
scripting (XSS) [3, 33] and cross-channel scripting (XCS) [5]. At
the core of these attacks is injection of JavaScript code into a con-
text not originally intended. These attacks lead to stolen credentials
and actions performed on the user’s behalf by an adversary.

To make matters worse, web applications today include not
only Internet services, but also boxed products that are deployed to
homes and businesses. As a result, patches to web applications can
incur serious costs to fix. Just as in the case of buffer overflows with
traditional desktop software, so too must a patch for these systems
be pushed out to all installs all over the world.

While substantial research and commerical interst focuses on
web vulnerability scanning, our work in contrast aims at retrofitting
legacy web applications to make them correct before deployment.
Ideally, we could create systems that resist attacks by construction.
In this direction, recent work such as BLUEPRINT has proposed
primitives to encode HTML output in a safe way [23]. Unfortu-
nately, these techniques are difficult to apply to legacy web ap-
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plications because they make fundamental changes to the way an
application creates HTML for consumption by the web browser.

We therefore need mitigations for XSS attacks on web applica-
tions that can be incrementally retrofitted to existing code. We start
by analyzing defenses in an existing Web application, a large (over
400,00 lines of code) production-grade web-based product rep-
resentative of this class of applications. The application is both
widely used and also must handle potentially untrusted data from
multiple sources.

We focus on the use of sanitization: the practice of applying
filters to untrusted data to preclude attacks. We discover a class
of errors that are not an artifact of poorly designed sanitization
routines or complete lack of validation, but rather due to subtle
nesting of HTML contexts and sharing of dataflow paths in the
application. Based on the empirical analysis, we propose the core
problem of automatic sanitizer placement: given an application,
automatic selection of the appropriate sanity check to apply on
a dataflow path from a potentially dangerous data source to an
HTML output sink. Sanitization is also needed for cases where data
must be encoded to avoid causing functionality errors in a specific
context, such as encoding URLs in JavaScript.

Our results show that human developers accidentally mismatch
the choice of sanitizer with the browser’s parsing context. This
is unsurprising because correct placement of sanitizer requires a
developer to have global knowledge of the program as a whole. We
quantify two specific classes of errors: inconsistent sanitization and
inconsistent multiple sanitization. Program models used in prior
work are not as precise as ours, in particular not modeling the
browser parsing context, rendering them unable to detect this class
of errors.

The problem of automatic sanitizer placement is different from
the problem of ensuring sanitizer correctness. Our results and tech-
niques are complementary to those used for checking correctness
of sanitization routines [26, 1, 15], and new proposals for encoding
untrusted output in a browser-agnostic way [23]. There is a separa-
tion of concerns: given a set of sanitizers that is “correct” for spe-
cific application contexts, our work shows how to properly place
those sanitizers in an application.

Solving the automatic sanitization placement problem for
legacy applications is a step toward provably eliminating code in-
jection attacks such as cross site scripting. The end goal of this line
of research is a system that provides provable guarantees against
code injection attacks with minimal retrofitting to legacy applica-
tions.

We propose an automatic sanitization technique that prevents
errors arising from mismatches of sanitizers and browser parsing
contexts. We implement the technique in SCRIPTGARD and ap-
ply it to a large application with over 400,00 lines of code. Un-
like existing template-based HTML writing systems, such as ASP
.NET’s web and HTML controls, SCRIPTGARD performs context-
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sensitive sanitization. SCRIPTGARD allows developers to create
custom nesting of HTML contexts, which web applications of-
ten do, without sacrificing the consistency of the sanitization pro-
cess. SCRIPTGARD employs several simple, but novel features
that make it more amenable to practical deployment and wider
defense: (a) we sketch, but have not yet implemented, a design
that shifts the performance intensive analysis to a pre-deployment
analysis server, leaving only a low-overhead runtime path detec-
tor at runtime; (b) during analysis, SCRIPTGARD employs positive
taint-tracking, which contrasts with traditional taint-tracking be-
cause it is conservative (hence does not miss identifying sources
of untrusted data) and can provide defense against cross channel-
scripting attacks [5].

1.1 Contributions
This paper makes the following contributions:

• Motivation and analysis. In Section 2, we demonstrate that
manual sanitizer placement is error-prone. We identify two
classes of errors that are common: inconsistent sanitization
and inconsistent multiple sanitization. In other words, sanitizer
placement varies depending on the execution path, not just the
sink to which the data flows. In contrast state-of-the-art templat-
ing systems such as ASP.NET consider only the sink, leading
to inconsistent practices. We also discover that certain combi-
nations of sanitizers used in practice can result in unintended
errors.

• Testing for security. We propose a testing strategy for find-
ing sanitization flows that involves automatic server-side instru-
mentation combined with high-fidelity web browser instrumen-
tation. Our ability to do both server- and client-side provenance
tracking allows us to reason about potential sanitization flaws
with considerably better precision compared to techniques that
focus exclusively on the server [1, 20, 24].

• Runtime auto-sanitization. We propose, but have not yet eval-
uated, a low-overhead runtime monitoring and repair solution
that automatically performs the correct sanitization strategy.
Our approach either adds sanitizers or removes existing ones.
We sketch how a training phase can reduce the runtime over-
head by caching path specific information used to pick the cor-
rect sanitizers.

• Evaluation. In Section 5 we evaluate both the testing approach
as well as runtime auto-sanitization on a range of large-scale
widely-used web applications. Our benchmark is an applica-
tion with over 400,00 lines of code. We performed our security
testing on a set of 53 large web pages derived from 7 applica-
tions built on top of our test platform. Each page contains 350–
900 DOM nodes. We found inconsistent sanitization on 1,207
paths SCRIPTGARD analyzed (4.7% of the total paths) and ob-
served an additional 285 instances of inconsistent multiple san-
itization. Our runtime mitigation technique ensures that none
of these inconsistent uses of sanitizers will result in problems
at runtime. We provide provable guarantees subject to caveats
described in Section 6 on the correctness of sanitizers and the
soundness of our runtime instrumentation.

1.2 Paper Organization
The rest of the paper is organized as follows. Section 2 gives
motivation for the specification inference techniques SCRIPTGARD
uses. Section 3 provides a formalization for our work. Section 4
talks about SCRIPTGARD analysis and runtime recovery. Section 5
describes our experimental evaluation. Section 6 highlights topics
for discussion. Finally, Sections 7 and 8 describe related work and
conclude.

2. Overview
This section is organized as follows. Section 2.1 introduces a moti-
vating example capturing features of real-world code we analyzed.
Section 2.2 emphasizes some of our observations about the struc-
ture of real-world, legacy applications embodied in the running ex-
ample. Section 2.3 summarizes key challenges that exist in build-
ing a solution. Section 2.4 presents the common sanitization errors
addressed by SCRIPTGARD. Finally, we provide an overview of
SCRIPTGARD’s solution.

2.1 Motivating Example
Figure 2 shows a fragment of ASP/C# code which is difficult to
sanitize correctly. Before we delve into why this is so, we first
explain how this code is representative of characteristics seen in
real-world code.
Example 1 ASP .NET platform provides boiler-plate templates for
HTML output, called “controls”, which are classes that handle safe
rendering of of HTML content. The platform provides a set of built-
in sanitizers that it either automatically applies on output variables
or allows web applications to override using custom sanitizers.
However, we have observed that several large applications find
the expressiveness provided by the built-in controls insufficient
and extensively define custom controls. The running example is
typical of such real-world applications— it defines its own custom
controls, AnchorLink and DynamicLink, to render user-specified
links. The first custom control enables rendering links directly as
HTML whereas the second control allows dynamically inserting
it in the web page via JavaScript. The code invokes the Write
method of the built-in HtmlWriter class to incrementally write
string outputs to the HTML stream.

In this code, there are four data flow paths from the source of in-
put (the function AnchorLink.SetAttribRender), which accepts
a user link to emit, to the same HTML output operations defined
in function BaseTagControl.RenderControl. The four paths re-
sult from the two branch conditions in the shown fragment. Each
of the four paths is a series of operations that constructs a distinct
HTML “template” by concatenating strings with data that must be
sanitized. In essence, execution of each path instantiates a differ-
ent HTML template with data to be sanitized. Figure 1 shows the
four different templates instantiated with data to be sanitized by the
execution of the four different paths in the running examples.

Each application template places data in certain HTML con-
texts. An example HTML context is the “URL Path Attribute” con-
text, which means that the web browser is expecting a string that the
browser will treat as a URL path. Each context requires a different
sanitizer, which is a function from strings to strings that transforms
the data into a string safe for embedding in the associated context.
For instance, the EcmaScriptStringEncode sanitizer is function
that makes a string safe for usage in the JavaScript string literal
context. Here safe may refer both to functionality and to security;
sanitization prevents errors from strings that are not valid for the
parsing context. The implementation of the sanitizer, for the con-
text of our abstraction, is not relevant— indeed, many different im-
plementations can achieve the safety property.

This code is representative of applications that are subject to
static analysis and security audits — it is careful to restrict the con-
text in which data is allowed to be embedded. For instance, it rig-
orously appends quotes to each attribute value, as recommended
by security guidelines [28]. We have eliminated the actual saniti-
zation checks in this example to illustrate the challenges in apply-
ing them correctly. If sanitization checks were missing in the code
to begin with, several static/dynamic analysis tools (such as CAT
.NET [7]) can already identify these deficiencies. As a result, we
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HTML output Nesting of HTML contexts

<script type="text/javascript"> JavaScript String Literal, Html Attribute, JavaScript String Literal
document.write(’

<a href="javascript:
onNav(\u0027 TOENCODE\u0027);"></a>’);

</script>

<a href="javascript: onNav(’TOENCODE’);"></a> Html Attribute, JavaScript String Literal

<a href="TOENCODE"></a> Html Attribute

<script type="text/javascript"> JavaScript String Literal, Html Attribute
document.write( ‘ <a href="TOENCODE"></a>’);

</script>

Figure 1. The different HTML templates output by executing different paths in the running example. TOENCODE denotes the holes in the
output templates, which are filled by data that must be sanitized.

ignore the class of errors where sanitization is completely missing
in this work.

2.2 Observations
This example illustrates some features of real-world code that mo-
tivate the need for our analysis and automatic repair.

Nested contexts in output templates. In any output template, data
may be simultaneously placed in multiple contexts. For instance,
the first output template demonstrated in Figure 1 illustrates the is-
sue. The string to be encoded is placed in three nested contexts:
a JavaScript string, HTML attribute, and another JavaScript string
in that order. To understand this nesting of contexts, consider the
behavior of the web browser when parsing this shown fragment of
HTML code. The browser first recognizes a script code block and
feeds th string to be encoded to the JavaScript parser which creates
an AST corresponding to document.write function. Therefore,
the string is first processed by the JavaScript string lexer/parser and
hence we say, it is placed in a JavaScript string context. When the
document.write statement executes, a DOM node for an anchor
tag is created dynamically. This invokes the HTML attribute parser
in turn of the "javascript : ..." string. This step places the data
in the HTML attribute context. Finally, the JavaScript parser is in-
voked again when the JavaScript URI is processed by the browser.

At each stage of the parsing, the sanitization must prevent the
string from breaking out of the current context or introducing a dan-
gerous sub-context. Each context may allow a different set of attack
vectors — for instance, a ” does not break out of a single-quoted
JavaScript string, but does prematurely end the double-quoted at-
tribute value. Furthermore, the problem becomes more challenging
because of the fact that the browser automatically transforms the
string when transitioning from one context to the other — for in-
stance, the string is automatically Unicode decoded when the AST
is generated from the JavaScript string context. We conclude that
the applied sanitization must deal with multiple nested contexts, as
well as, with the transcoding effect introduced by the browser on
context transitions. Failure to sanitize the input in an order con-
sistent with the order of nesting of contexts can result in broken
functionality or unexpected behavior.

String templates. String operations (such as concatenation and
format string text substitution) are used to construct HTML out-
put templates. However, string operations are also used to imple-
ment a variety of other semantic operations that are not related to
output template construction. In legacy applications, templates are
constructed piecewise, often spanning operations in more than one
function. Identifying operations that implement the semantic task
of creating output templates requires program analysis. We observe
that even for a string operation that is ascertained to be a template

constructing operation, automatically identifying the context it in-
troduces in the template is challenging. For instance, prepending
the string "<a href=" to data conceptually places it in an HTML
attribute context during template construction. However, this se-
mantic interpretation is not explicit in the code representation and
is difficult to derive without analysis.

Intersecting data-flow paths. Note that the four paths share
code blocks, including the HTML output operations — there may
be other code fragments that share the HTML output function
BaseTagControl.RenderControl which are not shown in the
figure. In our experience, such sharing is common in real-world
applications. Since different dataflow paths introduce different
HTML templates a sequence of sanitizers applied for one dataflow
path may be incorrect for the other paths.

2.3 Challenge: Sanitizer Placement
The problem of sanitizer placement is to select one or more sanitiz-
ers, from a set of given sanitizers, and apply them on the input data
such that the data is safe for embedding in all the possible HTML
output templates of the application. We assume that the sanitizers
and their mapping to their associated HTML contexts is specified
(an example from our test application is shown in Figure 8 later in
the paper) and correct. We argue that the prevalent practice of man-
ually deciding the placement of sanitizers (typically, at a subset of
code locations) is hard to get right. Next, we discuss how two com-
monly employed sanitization strategies do not safely sanitize this
example.

Relying on output sanitization. Consider the case when the de-
veloper applies a sanitizer for the data at the HTML output sink,
namely at line 2 in function BaseTagControl.RenderControl.
Later in the paper we derive the input specification for our
test application, which we show in Figure 8. According to the
specification, HtmlAttribEncode sanitizer matches the HTML
context. Notice, however, that there is more than one embed-
ding context possible at this output point due to dataflow path
sharing. As a result, the picked sanitizer will be (a) consis-
tent for templates resulting for the path that executes function
AnchorLink.RenderControl, but (b) inconsistent for templates
which result in <SCRIPT> block templates from paths that execute
the function DynamicLink.RenderControl.

The reader may verify that moving the sanitizer applica-
tion to one earlier (template-constructing) operation in the
dataflow path is not a panacea either — if we pick an appropri-
ate sanitizer to apply in either AnchorLink.RenderControl
or DynamicLink.RenderControl, it may still be incon-
sistent. This is because the branch taken in the func-
tion AnchorLink.SetAttribRender decides whether
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TagControl.RenderControl (HtmlTextWriter writer, Control tag)

String AnchorLink.RenderControl ()

String DynamicLink.RenderControl()

void AnchorLink.SetAttribRender (String userlink)

BaseTagControl.RenderControl (HtmlTextWriter writer)

...
...

{

return “<a href=\”” + this.AttribMap [“href”] +   

  “\”></a>”; 

}

{

return “document.write(„<a href=\”” + 

        this.AttribMap [“href”] + “\”></a>‟ ); ” ;

}

BaseTagControl stc;

if (dyn) {

stc = new ScriptTagControl();

stc.prefixHTML = “<script type=\”text/javascript\” >”;

stc.suffixHTML = “</script>”;

Stc.Content = tag.RenderControl();                         

} 

else { 

stc = new BaseTagControl(); 

stc.prefixHTML = stc.suffixHTML = “”;

Stc.Content = tag.RenderControl();                         

}

Stc.RenderControl(writer);

{

  …

  if(…) { link.AttribMap[“href”] = “javascript: onNav(„” + userlink + “‟);” }

  else  { link.AttribMap[“href”] = userlink; }

  …

  TagControl.RenderControl (writer, link);

}

{

writer.Write (this.prefixHTML);

writer.Write (this.Content);

writer.Write (this.suffixHTML);

}

Figure 2. Running example: Code fragment showing pseudo-code for dynamic web application output generation, illustrating the problem
of automatic sanitizer placement. Underlined values must be sanitized.

EcmaScriptStringEncode (for javascript: OnNav(’ con-
text) or HtmlAttribEncode (for attribute context) is the right
sanitizer to apply. If the incorrect one is picked, it could break
the intended functionality of the application. For instance, the
HtmlAttribEncode function should eliminate javascript:

from the input string to be correct. Unfortunately, if we applied
HtmlAttribEncode to the path that legitimately places the data in
a javascript: context, this would break the application’s intended
behavior. The choice of sanitizer is inherently dependent on the
runtime behavior of the program.

Relying on eager sanitization. Developers sometimes rely on
sanitizing data eagerly at the input interface. Consider the case
when we pick the point for applying the sanitizer to be in the
function AnchorLink.SetAttribRender. We claim that selecting
a consistent sanitizer at this point is difficult because the input data
is embedded in different nested contexts based on the final output
template. Specifically, functions AnchorLink.Ren derControl
and DynamicLink.RenderControl introduce additional
but different HTML contexts in the output template; how-
ever, this is hard to discover from analyzing the code in
AnchorLink.SetAttribRender function, which is two hops

earlier in the static call chain and may even be in different
compilation units.

2.4 Common Sanitization Errors
In practice, we observe two problems that result from erroneous
sanitizer placement: inconsistent sanitization and inconsistent mul-
tiple sanitization. We explain them briefly in this section, and refer
the reader to Section 5 for details on how often we empirically ob-
served these errors in real-world code.

• Inconsistent sanitization refers to cases where a single sanitizer
is applied in a manner inconsistent with the (possibly nested)
HTML context where the data is emitted.

• Inconsistent Multiple sanitization errors refer to cases where a
sequence of sanitizers is applied on a path, but the resulting
transformation is inappropriate for the browser context. Incon-
sistent multiple sanitization arises for two reasons (a) for nested
contexts, a sequence of one of more sanitizers are to be applied,
and (b) most common sanitizers (such as the built-ins in .NET
and PHP) are not idempotent or commutative. Therefore, one

4 2010/10/1



Runtime training

Sanitizer/
context map

HTML context 
inference

Instrumented 
HTML5 browser

Code 
instrumentation

Instrumented 
server-side DLLs

HTML request
HTML request

HTML request
HTML request

Violating 
paths

Sanitization 
cache

Figure 3. SCRIPTGARD architecture

document.write(’<a href=" +
HtmlAttribEncode(EcmaScriptStringEncode(this.AttribMap["href"]))+...

(a) Method 1

document.write(’<a href=" +
EcmaScriptStringEncode(HtmlAttribEncode(this.AttribMap["href"]))
+ ...

(b) Method 2

Figure 4. Different sanitization approaches.

ordering of sanitizers may be proper for a browser context, but
the other is not.

Example 2 (Inconsistent Multiple Sanitization) Con-
sider the sanitizers to be applied for the function
DynamicLink.RenderControl in the running example. The
function places a string inside a double-quoted href attribute
which in turn is placed inside a JavaScript string. Accord-
ing to the specification in Figure 8, two sanitizer functions,
EcmaScriptStringEncode and HtmlAttribEncode, are to
be applied for the JavaScript string context and the HTML
attribute context, respectively. Let us assume a commonly rec-
ommended implementation for the sanitizers [28]; for instance,
EcmaScriptStringlEncode transcodes all characters (includ-
ing the " character) to Unicode encoding (\u0022 for "), and,
HtmlAttribEncode entity encodes characters (&quot; for ").
There are two ways to compose the two sanitizers, which are
shown in Figure 4.

From the description of the sanitizers, we notice that the sanitiz-
ers do not commute, i.e., the order of composition matters. It turns
out that for this output template, the first sequence composition of
sanitizers is inconsistent while the other is safe.

The key observation is that applying
EcmaScriptStringEncode first encodes the " character as
a Unicode representation \u0022. The Unicode representation is
not transformed when sanitized with HtmlEncode.

When the web browser parses the HTML output tem-
plate, the data is first placed in the JavaScript string literal
and then subsequently enters the attribute context after the
document.write executes. As a result of the inconsistent sequence
of sanitizers, the string " onclick=... would be transformed to
\u0022 onclick=.... This would be converted to its original form
after the Unicode decoding occurs in the web browser after being
processed as the JavaScript string literal. The " then will cause the
web browser to transition out of the HTML href context. This un-
expected transition could negatively impact the functionality of the
web site, potentially even leading to a security vulnerability.

The opposite order of sanitizer composition would completely
eliminate the possibility of such an unexpected browser transition.
In this case, the " character would be caught by HtmlEncode before
the string is passed to EcmaScriptStringEncode.

2.5 SCRIPTGARD Solution Overview
Figure 3 illustrates the SCRIPTGARD solution. We start with a pro-
vided sanitizer/context map. At the core of SCRIPTGARD, there is
runtime training. We take a deployed version of the web applica-
tion and run a series of requests against it. The application is in-
strumented to precisely keep track of data provenance. To mark the
application of sanitizers, which in turn put the browser parser in
different parsing contexts, we augment the output page with spe-
cial SCRIPTGARD markup. Section 4.1.2 describes this process in
more detail.

In other words, each HTTP request produces an HTTP response,
which is the page that that application sends to the browser. Our
approach is to use a specially modified browser parser that has been
augmented to understand — and remove the special SCRIPTGARD
markup, converting it to context information. This form of analysis
results in us

• recoding inconsistent paths to be reported to the application
developer or security analyst;

• for consistently sanitized paths, we record the sanitization strat-
egy to be later used for runtime enforcement.

In the next two sections, we proceed to first formalize the problem
of correct sanitizer placement and then describe the SCRIPTGARD
implementation in much more detail.

3. Formalizing Sanitizer Placement
The goal of this work is to ensure that SCRIPTGARD is effective
at preventing inconsistent sanitization. To do this, we are going
to reason formally about what constitutes inconsistent sanitization
and our strategy for detecting such inconsistencies. Our goal in this
section is a formalization that is precise enough to prove theorems,
high-level enough to abstract implementation details, but still close
enough to the latter to remain meaningful.

We start with an abstract model of the browser. This allows us
to define precisely what we mean by a parsing context. The notion
of a context is closely tied to sanitizers that are used, as discussed
previously in Section 2. For example, HtmlAttributeEncode will
properly escape strings in the HTML attribute context, but it is in-
consistent to use in other contexts. That in turn allows us to pre-
cisely characterize context-sanitizer mismatches. We then define
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Figure 5. An abstract model of an HTML 5-compliant Web
browser. Gray boxes represent various parsers for the browser sub-
grammars. Black boxes are the major browser execution compo-
nents.

what it means for a server-side program to prevent all such context-
sanitizer mismatches. Finally, we show that our strategy in SCRIPT-
GARD in fact transforms programs into ones that ensure (statically
or dynamically) that no context-sanitizer mismatches are possible.

3.1 Browser Model: Definitions
We begin with a browser model as illustrated in Figure 5. For our
purposes, we model a web browser as a parser consisting of sub-
parsers for several languages. Of course, a real browser has a great
deal of implementation issues and side effects to grapple with, but
these are out scope of the problems we consider here.

More precisely, we treat the browser as a collection of
parsers for different HTML standard-supported languages. Figure 5
shows the sub-grammars corresponding to the HTML language,
JavaScript language, and the languages for web addresses and in-
line style attributes.

Because inconsistent application behavior may depend on con-
text that are more fine-grained that regular HTML or JavaScript
parsing, we can further divide each sub-grammar into partitions.
For instance, the figure shows the JavaScript grammar further sub-
divided into the string literal sub-grammar, JSON sub-grammar,
statement sub-grammar and the number sub-grammar. Formally,
we model the browser as a composition of multiple sub-grammars.

DEFINITION 1. LetG1, G2, ...Gn be n sub-grammars, where each
context-free grammar Gi = (Vi,Σi, Si, Pi) is a quadruple con-
sisting of a set of non-terminals Vi, terminals Σi , start symbol Si

and productions Pi.
Let T be a set of grammar cross-grammar transition symbols

and the grammar transition productionsPT , be a set of productions
of the form A→ Ti or Ti → B, such that A ∈ Vi, B ∈ Vj (i 6= j)
and Ti ∈ T .

We define a web browser as a grammar G = {V,Σ,S, P}, with
non-terminals V = V1 ∪ V2... ∪ Vn, terminals Σ = ∪Σi, start
symbol S and a set of productions P = PT ∪ P1 ∪ P2...Pn.

Conceptually, parsers for various languages are invoked in
stages. After each sub-parser invocation, if a portion of the input
HTML document is recognized to belong to another sub-language,
that portion of the input is sent to the appropriate sub-language
parser in the next stage. As a result, any portion of the input HTML

document may be recognized by one or more sub-grammars. Tran-
sitions from one sub-grammar to another are restricted through pro-
ductions involving special transition symbols defined above as T ,
which is key for our formalization of context. In a real web browser,
each transition from one sub-grammar to another may be accompa-
nied by a one or more transduction steps of the recognized input.
Example 3 For instance, data recognized as a JavaScript string is
subject to Unicode decoding before being passed to the AST. Or,
when certain part of the HTML document is recognized as a URI,
HTML 5-compliant browsers subject the data to percent-encoding
of certain characters before it is sent to the URI parser [10].

This form of encoding can be modeled using additional rules in
either of the sub-grammars. While restricting the browser formal-
ism to a context-free grammar might elide some of the real-world
complexities, we find this to be a convenient way for defining the
notion of context, which appears to match the reality quite well.

3.1.1 Parsing Contexts
We formally define the notion of a browser parsing context here,
with reference to the grammar G. Intuitively, a context reflects the
state of the browser at a given point reading a particular piece of
input HTML. Each step in the derivation, denoted by ⇒ applies
a production rule and yields a “sentential form”, i.e., a sequence
consisting of non-terminals and terminals. We model the parsing
context as a sequence of transitions made by the parser between
the sub-grammars in G, only allowing the derivations that denote
transition from one sub-grammar to another.

DEFINITION 2. Let derivation D : S ⇒∗ γ correspond to the
sequence (P1, P2, ...Pk) of production rule applications to derive
a sentential form γ from the start symbol S.

A browser context CD induced by a derivation D is defined as
a projection (P1, P2, . . . Pk) →↓ (P ′1, P

′
2 . . . P

′
l ), that preserves

only the productions P ′i in the set of grammar transitions PT .

Our grammars are deterministic, so the notion of inducing a parsing
context is well-defined. The browser enters a particular context as
a result of processing a portion of the input.

DEFINITION 3. We say that an input I induces browser context C,
if

• D : S(I) ⇒∗ γ (on input I , S reduces to γ following deriva-
tion D), and

• D induces context C.

3.1.2 Sanitizers
A complex modern web application typically has a variety of both
server- and client-side sanitizers. We make the simplifying assump-
tion that sanitizers are pure, i.e. lacking side-effects. Our review of
dozens of real-life sanitizers confirms this assumption. We model
sanitizers as abstract functions on strings. Formally,

DEFINITION 4. A sanitizer is a function f : string 7→ string .

DEFINITION 5. A context-sanitizer map is

ψ(C) = ~f

where C is a context and ~f is a sequence of sanitizers.

The goal of sanitization is typically to remove special characters
that would lead to a sub-grammar transition. For example, we often
do not want a transition from the HTML parsing context to the
JavaScript parsing context, which would be enabled by inserting a
<SCRIPT> block in the middle of otherwise non-offending HTML.
Of course, this but one of many ways that the parser can transition
to a different context. Next, we define the correctness of a sequence
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of sanitizers. The intuition is that is after sanitization, the state of
parsing is confined to a single context.

DEFINITION 6. Let input I consist of the parsed and non-parsed
portion: I = [IP ◦ INP ]. Let input IP induce browser context C
such that ψ(C) = ~f .

Then we say that the context-sanitizer map is correct if when
~f(INP ) is reduced, the grammar never leaves context C.

In other words, applying the correct sequence of sanitizers “locks”
a string in the current context. In particular, a string locked in
the HTML context cannot cause the browser to transition to the
JavaScript context, leading to a code injection.

3.2 Server-side Program: Definitions
So far, our discussion has focused on parsing HTML strings within
the browser regardless of their source. Our goal is to produce
HTML on the server that will always have consistent sanitization.
Server-side programs take both untrusted and trusted inputs. Un-
trusted inputs are the well-known sources of injection possibilities
such as HTML form fields, HTML headers, query strings, cookies,
etc. Trusted inputs are often read from configuration files, trusted
databases, etc. Note that the notion of what is trusted and what
is not is often not clear-cut. Section 4.1.1 describes how SCRIPT-
GARD addresses this problem. Next, we define what it means for a
program to properly sanitize its inputs.

DEFINITION 7. A server-side program P : I → O defines a rela-
tion from untrusted user inputs I to output string O. The program
interprocedural data flow graph is a graph 〈N , E〉 with designated
sets of nodes

〈Src,Snk ,San〉 ⊆ 〈N ×N ×N〉
where Src are the sources that introduce an untrusted inputs in P ,
Snk are the sinks that write strings to the output HTTP stream, and
San are the sanitizers used by the program.

Without loss of generality, we assume that sink nodes either write
untrusted strings to the output stream or trusted strings, but never
strings containing both. Sink operations with mixed content can
be translated to an equivalent dataflow graph with only exclu-
sively trusted or untrusted sink nodes using sink node splitting:
the output of a mixed string Snk(q1 + q2 + . . . + r1 + . . . qn)
can be split into a sequence of exclusive sink writes Snk(q1),
Snk(q2) . . . , Snk(r), . . . , Snk(qn).

DEFINITION 8. An untrusted execution trace t of program P is a
sequence of executed nodes

~t = n1, . . . , nk ∈ N
such that n1 ∈ Src, nk ∈ Snk .

DEFINITION 9. Let t be an untrusted execution trace~t = n1 . . . nk

and let ~f = f1, . . . , fm be a sequence of sanitizers such that
f1, . . . , fm is a subsequence of n2, . . . , nk−1.

For all inputs I, let O be the total output string just before
the execution of the sink node in ~t. We say that trace ~t is properly
sanitized if O induces context C and ψ(C) = ~f .

In other words, for all possible trace executions, we require that the
proper set of sanitizers be applied on trace for the expected parsing
context. Note that trusted trace are allowed to change the browser
context. A common example of that is

output.WriteLine("<SCRIPT>");
output.WriteLine("alert(’hi’);");
output.WriteLine("</SCRIPT>");

where each string is a sink and the first and third lines correspond
to browser state transitions.

THEOREM 1. If untrusted trace ~t is properly sanitized, assume
the browser has read string O which induces context C. Then
reading the rest of the string output produced by ~t cannot induce
any contexts C′ 6= C.
Proof: Let input I = [IP ◦ INP ]. By Definition 9, for all
input-output pairs IP → O, ~t contains sanitizers ~f correct for any
context C inducible by O. By Definition 6, we know that applying
~f to the remainder of the input INP cannot leave context C.

For reasons of correctness, we wish to ensure that all untrusted
execution traces are properly sanitized.

DEFINITION 10. A server-side program P is properly sanitized if
for every untrusted execution trace ~t of P , ~t is properly sanitized.

As an obvious corollary, if the program is properly sanitized, then
no untrusted input to the server program can force the browser to
change its context.

4. Analysis and Runtime Recovery
So far, we have discussed the abstract formalization of sanitizer
placement. This section focuses on what it takes to get SCRIPT-
GARD to work in practice. The overall architecture for SCRIPT-
GARD is shown in Figure 3. SCRIPTGARD has two main compo-
nents: (a) a pre-deployment analysis phase, and (b) a runtime auto-
sanitization componenent. The results of our analysis are cached in
a sanitization cache, which serves a basis for runtime sanitization
of the application during deployed operation. The primary motiva-
tion for this architecture is to enable separation of expensive analy-
sis to be performed prior to deployment, leaving only low-overhead
components enabled at runtime.

SCRIPTGARD requires a map between browser parsing contexts
and sanitizer functions appropriate for those contexts. In practice
this map is specified by security architects or other experts and can
be done once and for all. The sanitizers fall into two broad classes.

1. sanitizers that restrict untrusted data to be syntactically confined
to one sub-grammar (or even further restrictively, to a set of
permitted non-terminals in a sub-grammar).

2. sanitizers that compensate for the transduction along grammar
transition productions.

Figure 8 shows the example sanitization specification for the
running example as well as the applications we study. In our
example application, an example of (1) is a sanitizer called
SimpleHTMLFormatting, that transforms the input such that its
output can only contain certain permitted HTML tags such as
<b>, <a> and so on. An example of (2) is a function called
EcmaScriptStringEncode. This function takes JavaScript liter-
als and converts them to Unicode. Such conversion is necessary
because the JavaScript parser converts Unicode to some other rep-
resentation for string data. Another example of (2) is function
UrlPathEncode which performs percent-encoding. This percent
encoding is required because the URL parser will decode URLs on
entry to the parser.

Recall that correctness of a sequence of sanitizers is a property
of the execution trace. SCRIPTGARD is capable of determining
the correct sequence given only knowledge of which sanitizers are
appropriate for individual parsing contexts.

Given a trace of execution, SCRIPTGARD is capable of mapping
the trace to a static program path. This allows us to determine
the correct sequence of sanitizers that should be applied on this
program path.
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Reasoning about the localized correctness and completeness
properties of the context-sanitizer mapping is an independent prob-
lem of interest; techniques for such correctness checking are an
area of active research [1, 20, 15]. In this work, we assume the
functional completeness and correctness for the specifications.

4.1 Sanitizer Placement Analysis
As explained in Section 2, applying sanitization to early or too
late may result in inconsistent sanitization. Our key observation
highlighted in Figure 2 is that the sanitizer placement must be path-
sensitive due to the path-sensitive nature of HTML output in real-
world applications we study.

SCRIPTGARD employs a dynamic analysis which analyses each
executed path as a sequence of traces (as defined in Section 3).
Each trace is conceptually a sequence of dataflow computation
operations that end in a write to the HTTP stream. SCRIPTGARD’s
dynamic analysis aims to check if the sanitization applied on the
any untrusted trace is correct. For each untrusted trace observed
during program execution, SCRIPTGARD determines

• a mapping for each program trace ~t to a sequence of sanitizer
functions, f1, f2, . . . , fk, to apply, and

• the portion of the output string that should be sanitizer

We call the first step context inference and the second step
is achieved by a technique called positive taint-tracking. If the
sequence of sanitizers applied on a trace does not match the inferred
sequence, SCRIPTGARD discovers a violating path and it adds the
corrected sanitizer sequence for this path to the sanitization cache.
We describe these two steps in more detail next.

4.1.1 Positive Information Flow
So far, we discussed untrusted execution traces in the abstract, we
have not talked about how SCRIPTGARD determines which traces
are untrusted and, therefore, need to be sanitized. In real-world
applications, exhaustively identifying all the sources of untrusted
data can be challenging [22]. Recent work has shown that failure
to identify non-web related channels, such as data read from file-
system, results in cross-channel scripting

attacks [5].
Instead of risking having an incomplete specification, thereby

missing potential vulnerabilities, SCRIPTGARD takes a conserva-
tive approach to identifying untrusted data: it employs positive in-
formation flow, which is modification of traditional (or negative
information flow) used in several previous systems [32, 27, 13, 21,
35, 36]. Instead of tracking untrusted (negative) data as it propa-
gates in the program, we track all safe data. Positive information
flow is conservative because if input specifications are incomplete,
unknown sources of data are treated as unsafe by default.

The source of “taint” in positive tainting are constants in the
program source, such as integers and strings as well as certain in-
put interfaces that are known to be safe from attacker control (such
as the System GUID generator, random-number generator, and so
on). In the applications that we have studied, the conservative san-
itization has not impacted the intended functionality and has led
us to identify several “gray” sources of potentially untrusted data.
For instance, if the application interfaces with an central LDAP
authentication system that stores users info or the Windows logon
identity database, this could be an untrusted channel if we consider
insider threats. Similarly, OS filenames or paths may be treated as
untrusted if the application offers a non-web channel (such as FTP)
for untrusted inputs [5]. In addition, data may pass through library
modules which may implemented in other languages or as bina-
ries. The problem of a heterogeneous code base spanning multiple
languages is a reality in real-world application, and are a signifi-
cant challenge to the adoption of language-based techniques of data

tracking. Positive taint-tracking conservatively reasons about these
flows of information through untracked code modules. We argue
that conservative nature of positive information flow lends itself to
safer refinements of specifications for identifying untrusted data,
as compared to relying on manual identification of all sources of
untrusted data a priori.

Implementation. Due to the string-heavy nature of the applica-
tion and problem domain, we focus our implementation on tracking
positive taint for strings. The .NET runtime supports two kinds of
string objects: mutable and immutable objects. Immutable objects,
instances of the System.String class, are called so because their
value cannot be modified once it has been created [8]. Methods
that appear to modify a String actually return a new String con-
taining the modification. The .NET language also defines mutable
strings with its System.Text.StringBuilder class, which allows
in-place modification of string value; but all access to the charac-
ters in its value are mediated through methods of this class [9]. In
essence, all strings in .NET are objects, whose values are accessed
through public methods of the class — the language does support
a primitive string type but the compiler converts string type to
the String object and uses class methods whenever the value of a
primitive string type is manipulated.

Using the encapsulation features offered by the language, we
have implemented the taint status for each string object rather than
keeping a bit for each character. The taint status of each string ob-
ject maintains metadata that identifies if the string is untrusted and
if so, the portion of the string that is untrusted. Our implementation
maintains a weak hash table for each object, which keys on weak
references to objects, so that our instrumentation does not interfere
with the garbage collection of the original application objects and
scales in size. Entries to freed objects are therefore automatically
dropped.Taint prorogation, capturing direct data dependencies be-
tween string objects, is implemented by using wrapper functions
for all operations in string classes. Each wrapper function updates
the taint status of string objects at runtime.

We use CCI metadata [34], a robust static .NET binary rewriting
infrastructure to instrument each call to the string object construc-
tors and taint prorogation methods. The .NET language is a stack-
based language and CCI Metadata provides the ability to interpose
on any code block and statically rewrite it. Using this basic facility,
we have implemented a library that allows caller instrumentation
of specified functions, which allows redirection of original method
calls to static wrapper methods of a user-defined class. Redirection
of virtual function calls is handled the same way as static calls with
the exception that the wrapper function accepts the instance object
(sometimes referred to as the this parameter) is received as the
first argument to the wrapper function. The user defined class is
implemented seperately as a C# code and a reference to the user-
defined .NET DLL is added to the original application via CCI’s
rewriting API.

Soundness Considerations. We explain how our positive infor-
mation flow implementation is sound, i.e., does not miss identify-
ing untrusted data, with exceptions identified in point 5 below. We
show that these exceptions are rare in our test program.

1. The language encapsulation features provide the guarantee that
all access to the string values are only permitted through the
invocation of methods defined in the string classes.

2. All constant strings are created by invoking the constructors for
the string classes or by creating a primitive string type using
the operation ldstr. Any modification to the primitive value
by the program is compiled to a conversion to an object of the
string class, which invokes the string class constructors. Thus,
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we can safely track all sources of taint by instrumenting these
constructors.

3. Conversion between the two string classes is possible. This
involves the call to the Object.ToString generic method.
Statically, we instrument all these calls, and use .NET’s built-
in reflection at runtime to identify if the dynamic instance of
the object being converted to a string and perform the taint
metadata update.

4. The string classes System.String and
System.Text.StringBuilder are both sealed classes;
that is, cannot be inherited by other classes. This eliminates
the possibility that objects that we do not track could invoke
methods on the string classes.

5. String class constructors which convert values from non-string
types are treated as safe (or positively tainted) by default. This
is because we do not currently track taint status for these types
presently. In principle, this is a source of potential unsoundness
in our implementation. For example, the following code will
lead our tracking to treat untrusted data as trusted:

String untrusted = Request.RawUrl;
var x = untrusted.ToCharArray();
....
String outputstr = new String(x);
httpw.Write(outputstr);

Fortunately, these constructors are rare in practice. Figure 6
shows the distribution of functions instrumented by SCRIPT-
GARD. The key finding is that potentially unsound construc-
tions occur only in 42 out of 23,244 functions instrumented for
our application. Our implementation ignores this source of false
negatives presently; we can imagine verifying that these do not
interfere with our needs using additional static analysis or im-
plement more elaborate taint-tracking in the future.

Output. The result of SCRIPTGARD’s analysis is three pieces of
information. First, SCRIPTGARD marks the portion of the server’s
output which is not positively tainted. The untrusted texts are de-
limited using special markers consisting of characters that are out-
side the alphabet used by the application legitimately. Second, for
each string written to the HTTP output stream, it records the se-
quence of propagators (such as string concatenation, format-string
based substitution) applied on the output text fragment. In essence,
this allows SCRIPTGARD to (a) separate strings that are used for
constructing HTML output templates from other strings, and, (b)
identify the propogator that places the untrusted data into an output
template. Third, it records a path string identifying the control flow
path leading up each HTML output sink operation.

In addition to the above information, SCRIPTGARD’s gathers
the sequence of sanitizers applied to a given untrusted data. To do
this, each sanitizer is instrumented similarly to surround the input
data with additional special markup identifying that sanitizer’s ap-
plication to the input data. The knowledge of the untrusted data
along with the nesting of sanitizers is thus encoded in the HTML
output of the server. This output is then subject to the context infer-
ence step, which is described next.

4.1.2 Context Inference
For a given analyzed path the server outputs a HTML response en-
coding the information identifying sub-strings that are untrusted, as
well as, the sequence of sanitizers applied. SCRIPTGARD employs
a web browser to determine the contexts in which untrusted data is
placed, in order to check if the sanitization sequence is consistent
with the required sequence.

In our implementation, we use the Microsoft Research “Cloud
Computing Client,” or C3. C3 includes an HTML 5 compliant

parser that has been developed from scratch to be as close to the
current specification as possible, plus a fast JavaScript engine. The
C3 parser takes an HTML page as input. In the page, untrusted data
is identified by special markup. The special markup is introduced
at the server’s output by our positive taint-tracking.

We augment the C3 parser to track the sequence of contexts
(or sub-grammars) in which data marked as untrusted appears. In
our implementation for HTML, we treat each context to be the (a)
state of the lexer (as defined in the HTML 5 draft specification),
(b) the stack of open elements (as defined in the HTML 5 draft
specification), and (c) specific information about the local state
of parse tree (such as the name of current tag or attribute being
processed).

We apply techniques similar to string accenting for tracking
untrusted data in other contexts [6]; DOM nodes that correspond
to untrusted data are also marked (or accented). Similar context
tracking is applied for the JavaScript parser. For the policy of
our applications and the policies identified in previous work [23],
we have found this level of tracking to be adequate. As result of
this tracking, the browser outputs the context information for each
untrusted data: a list of sub-grammars that parse untrusted data and
the sequence of transitions between them.

Determining a sanitization sequence. Using context informa-
tion, SCRIPTGARD decides the correct sequence of sanitizers to
apply for a given untrusted execution trace. Specifically, it tracks
which sub-grammars (or contexts) is the untrusted string parsed
in and their sequence. To determine the correct sanitizer sequence
(constructing ψ on demand), SCRIPTGARD applies for each con-
text in the context-chain (in order of the sequence): (a) the appro-
priate sanitizer from the input sanitization specification, and (b)
an appropriate sanitizer to account for the transduction of the data
associated with the sub-grammar transition. The inferred chain of
sanitizers is ensured to be of correct ordering as that of the context-
chain, thereby eliminate multiple sanitization errors that could have
resulted from manual placement.

Sanitizers that are rendered superflous due to the application of
a sanitizer previously in the inferred chain can be removed. For
instance, the application of sanitizer EcmaScriptStringEncode
makes subsequent applications of HtmlEncode superfluous as the
set of characters transformed by the former to unicode encoded for-
mat is a strict superset of the latter. This subsetting relation be-
tween the sanitizers is precomputed for the sanitizers; for the sani-
tizers defined in Figure 8, we have precomputed this relation to be
K ⊂ E ⊂ P ⊂ H ⊂ S and A ⊂ H , where K,E, P,H, S,A
are sanitizers UrlKeyValueEncode, EcmaScriptStringEncode,
UrlPathEncode, HtmlEncode, SimpleHtmlFormatting and
HtmlAttribEncode. We point out that this step is not necessary
for the sanitizer chain correctness, but it optimizes the inferred
chain. This final elimination of superfluous sanitizers as per these
constraints determines the correct sanitizer sequence that is consis-
tent with the context-chain. The correct sanitizer chains inferred for
the example in Figure 2 is given below:

path Sanitizer sequence

Path 1 EcmaScriptStringEncode, EcmaScriptStringEncode
Path 2 EcmaScriptStringEncode
Path 3 HtmlAttribEncode
Path 4 HtmlAttribEncode, EcmaScriptStringEncode

4.2 Automatic Sanitization at Runtime
We now sketch how sanitization can be applied at runtime in a
production system. We stress that we have not yet benchmarked
this proposal, but it shows a way to reduce runtime overhead.
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Context inference determines for a given substring in the server’s
HTML output, whether the applied sequence is correct or not. If the
sanitizers applied on the path do not match the inferred sanitizer
chain, then tool checks whether the applied sequence could be
dangerous or is merely superfluous.

If the sanitizer chain is dangerous, the execution path is reported
as a violating path. For each violating path, the correct sequence of
sanitizers is added to a sanitization cache.

Recall that the runtime instrumentation encodes information
about the executed path string until the HTML sink operation, say
S, that outputs the substring. In addition, the encoding also identi-
fies the code location of the dataflow propagator (say P ) (typically,
a string concatenation or format-string based string substitution)
that places the untrusted data in the trusted output template emitted
at S. In other words, we view the output template construction as a
sequence of string propagators. P is the propogator the embeds the
untrusted string into the template.

The auto-sanitization scheme is as follows. SCRIPTGARD en-
ables a low-overhead runtime path detector in the application. The
path detector tracks the execution path in the application. The path
executed uptil the sink S is checked in the sanitization cache. If an
entry exists, SCRIPTGARD sautomatically sanitizes the untrusted
substring(s) in the output template emitted at S. If path is not in the
sanitization cache, SCRIPTGARD leaves the application’s behavior
unchanged.

Rewriting untrusted output. To achieve the path-sensitive output
rewriting, SCRIPTGARD maintains a shadow copy of the untrusted
data in addition to the actual value that the program computes. If
the path is not in the sanitization cache, the actual value of the un-
trusted data is used at S. However, if the path is in the sanitization
cache, the shadow copy is selected, and applied the correct sanitizer
sequence before emiting at S. In our application, output template-
constructing operations typically consist of string concatenation
and format-string based substitutions, which do not perform arbi-
trary transformation on the HTML template string. This enables the
following instrumentation-based program transformation.

1. At string propogator P , create a shadow copy of the untrusted
data. A simple way to achieve this is the create two copies of the
untrusted value, surround the values with special ”unforgable
markup”, and concatenate them both in the template. The first
value is the shadow copy, while the second will be the actual
value. To make the markup resistent to attacks, we plan to use
markup randomization [26].

2. Sanitizers are re-implemented to be markup-aware. Specifi-
cally, for untrusted content identified by special markup, the
sanitizers will only transform the actual copy, leaving the
shadow copy untouched.

3. At S, if the path executed is in the sanitization cache, SCRIPT-
GARD strips the actual value and markup out, applies the sani-
tization on the shadow copy and writes it to the output stream.

4. At S, if the path is not in the sanitization cache,SCRIPTGARD
strips the special markup and the shadow value out, and writes
the actual value to the output stream thereby leaving the appli-
cation behavior unchanged for paths that are safe or not ana-
lyzed.

Consider the example in Figure 1 when following “Path 4.” The
proposed system would first detect that the path taken is “Path
4.” Then the system would look up in the sanitization cache the
correct sequence of sanitizers. As we showed above, this sequence
is HtmlAttribEncode, followed by EcmaScriptStringEncode.
The untrusted text is surrounded with special markup at the string
concatenation in function DynamicLink.RenderControl and the

6,691 

42 16,511 

Initializers (sound)

Initializers (unsound)

Propagators(sound)

Figure 6. Classification of functions used for SCRIPTGARD in-
strumentation.

HTML Sink Context Correct sanitizer that suffices

HTML Tag Context HTMLEncode, SimpleTextFormatting
Double Quoted Attribute HTMLAttribEncode

Single Quoted Attribute HTMLAttribEncode

URL Path attribute URLPathEncode1

URL Key-Value Pair URLKeyValueEncode

In Script String EcmaScriptStringEncode

CDATA HTMLEncode

Style Alpha− numerics

Figure 8. Sanitizer-to-context mapping for our test application.

shadow copy is created. This allows SCRIPTGARD to automatically
apply the two sanitizers in sequence at the HTML output sink when
it is determined that path 4 is executed.

For our low overhead path detector, we plan to use techniques
from the Holmes project. That project developed low-overhead
techniques for detecting paths related to bugs of interest encoun-
tered during a testing phase. They show overheads of less than 3%
in some cases, because the branches related to the bugs of interest
can be isolated and tested for quickly.

5. Evaluation
This section is organized as follows. Section 5.1 describes our
experimental setup. Section 5.2 details the results of SCRIPTGARD
analysis and presents our findings.

5.1 Experimental Setup
Our evaluation focuses on a large legacy application of over
400,000 lines of lines of server-side C# code. To perform the run-
time training described in Section 4, we manually interacted with
each of the SCRIPTGARD-enabled applications exploring distinct
features and configuration settings of each applications. A cur-
rent version of the platform was installed on a Microsoft Windows
Server 2008 workstation. We used the application’s debug configu-
ration. Our test system also had an install of Microsoft SQL Server
to hold the application database and connected to a server set up to
manage user identities. All three components of the testbed were
previously tested to ensure maximum compatibility.

In the course of this runtime interaction, we accessed 53 distinct
web pages, which we subjected to SCRIPTGARD analysis. Figure 7
shows the size of the various web pages in terms of the number of
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Figure 7. Distribution of DOM sizes, in nodes, across our training HTML pages.

DOM nodes they generate from their initial HTML output (ignor-
ing dynamic updates to the DOM via JavaScript, etc.). Typically,
page sizes range from 350 to 900 nodes.

In addition to using the built-in rendering features (web and
HTML controls) provided by an underlying web framework, our
application defines and uses custom objects that handle their own
rendering. Figure 7 indicates that a majority of the DOM nodes
in the applications’ outputs are derived from custom controls.
The language-based solution of SCRIPTGARD, as opposed to a
framework-based solution, allows it to be directly applicable to en-
suring correctness of custom features of enterprise applications.

The application permits only a small set of contexts for embed-
ding untrusted data. Figure 8 shows the mapping between contexts
and sanitization functions; we note this is a strict subset of the map-
ping defined in previous work [23]. In particular, it does not permit
unquoted attribute values, which are known to be notoriously hard
to sanitize, and permits only quoted attributes which have well-
defined rules for sanitization [28]. Furthermore, it always sets the
page encoding to UTF-8, eliminating the possibility of character-
set encoding attacks [14]. The tested application also does not use
XHTML pages — several browsers automatically HTML entity-
decode attribute values and in HTML elements, thereby undermin-
ing the assumptions made by its sanitization functions. Admittedly,
the sanitizer-context mapping is quite tricky to construct. We ar-
rived at the result in Figure 8 after several interactions with the
application’s product team and its security engineers.

Note that the application we tested relies on its own custom
sanitizers, as shown in Figure 8, which cover application-specific
issues. These custom sanitizers have been subject to severe internal
security audits. For the purposes of this work, we assume their
individual functional correctness, i.e. they work correctly for a
specific context. As argued previously, a range of complementary
techniques exist that focus on ensuring this correctness.

These sanitizers are similar to those found in several other
major web platforms such as Google CDT, AutoEscape, OWASP
recommendations, or the Microsoft Anti-XSS library. We believe
the SCRIPTGARD approach would also apply to these platforms.

5.2 Analysis Results
This section describes our findings on the basis of running 53
SCRIPTGARD-annotated pages and looking for inconsistent and
multiple sanitization errors described in Section 2.4. Our data
demonstrates that manual sanitizer placement is prone to errors,
even if the sanitizers are individually correct. Next, we discuss the
two classes of errors SCRIPTGARD found as a result of context-
sanitizer mismatches.

5.2.1 Inconsistent sanitization
Figure 9 shows that SCRIPTGARD exercised 25,209 paths on which
sanitization was applied. Of these, 1,558 paths (or 6.1%) were
improperly sanitized. Of these improperly sanitized paths, 1207
( 4.7% of the total analyzed paths) contained data that could not be
proved safe by our positive taint tracking infrastructure, so there-
fore are candidates for runtime automatic choice of sanitization.

We used Red Gate’s .NET Reflector tool, combined with other
decompilation tools, to further investigate the executions which
SCRIPTGARD reported as improperly sanitized. Our subsequent in-
vestigation reveals that errors result because it is difficult to manu-
ally analyze the calling context in which a particular potion of code
may be invoked. In particular, the source and the sink may be sepa-
rated by several intervening functions. Since SCRIPTGARD instru-
ments all string operations, we can count how far sources and sinks
are removed from each other. In Figure 12, we graph the distribu-
tion of these lengths for a randomly selected sample of untrusted
paths. This shows that a significant fraction of the chains are long
and over 200 of them exceed 5 steps.

Our data on the length of def-use chains is consistent with those
reported in previous static analysis based works [21]. As explained
in Section 2, the sharing of dataflow paths can result in further
ambiguity in distinguishing context at the HTML output point in
the server, as well as, in distinguishing trusted data from untrusted
data. As a result, we observed some paths along which sanitization
of trusted strings was performed. In our investigation we observed
the following cases:

• In several cases, a single sanitizer was applied, but the sanitizer
did not match the context. In almost all of such cases analyzed,
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Inconsistently sanitized

Web Page Sanitized Paths Total Highlight

Home 396 14 9

A1 P1 565 28 22
A1 P2 336 16 11
A1 P3 992 26 21
A1 P4 297 44 35
A1 P5 482 22 17
A1 P6 436 23 18
A1 P7 403 19 13
A1 P8 255 22 18
A1 P9 214 16 12
A1 P10 1,623 18 14

A2 P1 315 16 12
A2 P2 736 53 47
A2 P3 261 21 16
A2 P4 197 16 12
A2 P5 182 22 18
A2 P6 237 22 18
A2 P7 632 20 16
A2 P8 450 23 19
A2 P9 802 26 22

A3 P1 589 25 21
A3 P2 2,268 18 14
A3 P3 389 16 12
A3 P4 477 103 15
A3 P5 323 24 20
A3 P6 292 51 45
A3 P7 219 16 12
A3 P8 691 25 21
A3 P9 173 16 12

A4 P1 301 24 20
A4 P2 231 30 25
A4 P3 271 28 22
A4 P4 436 38 32
A4 P5 956 36 24
A4 P6 193 24 18
A4 P7 230 36 32
A4 P8 310 24 20
A4 P9 200 24 18
A4 P10 208 24 20

A4 P11 498 34 29
A4 P12 579 34 29
A4 P13 295 25 20
A4 P14 591 104 91

A5 P1 604 61 55
A5 P2 376 25 21
A5 P3 376 25 21
A5 P4 401 26 21
A5 P5 565 31 26
A5 P6 493 34 29
A5 P7 521 34 29
A5 P8 427 24 20
A5 P9 413 24 20
A5 P10 502 28 23

Total 25,209 1,558 1,207

Figure 9. Characterization of the fraction of the paths that were
inconsistenly sanitized. The right-most column indicates which
fraction of those paths were highlighted as not be proved to use
only safe values during our dynamic testing.

16,949 
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length=1

length=2

length=3

length>3

Figure 10. Distribution of the lengths of applied sanitization
chains, showing a sizeable fraction of the paths have more than
one sanitizer applied.

the sanitizer applied was in a different function from the one
that constructed the HTML template in which to embed the
untrusted data. This suggests that developers may not fully
understand how the context — a global property — impacts
the choice of sanitizer, which is a local property. This is not
surprising, given the complexity of choices in Figure 8.

• A small fraction of cases sanitized trusted data. While this is
unlikely to lead to a vulnerability, we still report these cases
because they point to developer confusion. On further investi-
gation, we determined this was because sinks corresponding to
these executions were shared by several dataflow paths. Each
such sink node could render potentially untrusted data on some
executions, while rendering purely trusted data on others.

• In some cases more than one sanitizer was applied, but the
applied sanitizers was not correct for the calling context of the
sanitizer in which the data was placed 2.

5.2.2 Inconsistent Multiple Sanitization
Nesting of parsing contexts is fairly common. For example a URL
may be nested within an HTML attribute. This nesting may require
multiple sanitizers to correctly filter untrusted inputs. Figure 10
shows the histogram of sanitizer sequence lengths observed. The
inferred context for a majority of these sinks demanded the use of
multiple sanitizers.

We observe that none of sanitizers employed by the tested ap-
plication are commutative. The sanitizers produce different outputs
if composed in different orders. In addition, none of them are idem-
potent, that is, repeated application of the same sanitizer results in
different outputs. As a result, if the developer determines the con-
text correctly but applies an incorrect ordering of sanitizers, it could
affect the application’s intended functionality and even introduce
vulnerabilities. Yet, as Figure 11 shows, the use of multiple sanitiz-
ers in the application is widespread, with sanitizer sequences such
as UrlPathEncode HtmlEncode being most popular.

We found a total of 3,245 paths with more than
one sanitizer. Of these, 285 (or 8%) of the paths with
multiple sanitization were inconsistent. The inconsis-
tent paths fell into two categories: first, 273 instances of

2Errors where the combination was correct but the ordering was incon-
sistent with the context are reported as inconsistent multiple sanitization
errors.
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Figure 11. Histogram of sanitizer sequences consist-
ing of 2 or more sanitizers empirically observed in
analysis, characterizing sanitization practices result-
ing from manual sanitizer placement. E,H,U, K,P,S de-
note sanitizers EcmaScriptStringLiteralEncode,
HtmlEncode, HtmlAttribEncode, UrlKeyValueEncode,
UrlPathEncode,SimpleHtmlEncode respectively.

(EcmaScriptStringLiteralEncode ) (HtmlEncode)+
pattern. This pattern is inconsistent, as explained in exam-
ple 2 in Section 2.4. Second, we found 12 instances of the
(EcmaScriptStringLiteralEncode} (UrlPathEncode)+
pattern. This pattern is inconsistent because it does not properly
handle sanitization of URL parameters.

We found an additional 498 instances of multiple sanitization
that were superfluous, i.e., sanitizerA applied before sanitizerB al-
ready nullified attacks, rendering sanitization B superfluous. While
not a security bug, this multiple sanitization could break the in-
tended functionality of the applications. For example, repeated use
of UrlKeyValueEncode could lead to multiple percent encoding
causing broken URLs. Repeated use of HtmlEncode could lead
to multiple HTML entity-encoding causing incorrect rendering of
output HTML.

Other attacks involving multiple URL encoded inputs can also
be dangerous. SCRIPTGARD’s formalism can handle these errors;
however, our implementation does not track the flow of data from
the server to browser and back. The issue of multiple percent
encoding could be dangerous if the applied decodes on the server-
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Figure 12. Distribution of lengths of paths that could not be proved
safe. Each hop in the path is a string propagation function. The
longer the chain, the more removed are taint sources from taint
sinks.

side do not match the number of encodes. We leave automatic
identification and repair of those cases to future work. For the
purposes of this section, we report such cases as safe.

We emphasize that in our tests, none of the inconsistent saniti-
zations led to actual security vulnerabilities. Had we done so, we
would have contacted the vendor of the tested application and re-
vealed our findings to that company. We believe this reflects the
quality of previous testing of the application. Furthermore, as we
discuss in more detail in the next section, the goal of SCRIPTGARD
is not to find vulnerabilities. Instead, the goal of our approach is to
mitigate all potential vulnerabilites with provable guarantees.

6. Discussion
SCRIPTGARD provides a systematic foundation for ensuring sound
sanitization that can eliminate scripting attacks in web applications
by construction. In this section, we explain some of design choices
and discuss their impact on the results.

Bug Finding vs. Mitigation. SCRIPTGARD has discovered sev-
eral instances of paths along which the sanitization applied was
inconsistent. On further inspection, however, none of these paths
have led to real security issues. The reason is that our positive taint-
ing is conservative: if we mark some data as untrusted, it does not
necessarily imply that the adversary controls the data. Contrast our
information flow tracking with negative taint tracking, which traces
an execution directly from the adversary-controlled input to a taint
sink.

Recall that SCRIPTGARD’s goal is not to find bugs. Instead,
SCRIPTGARD aims to preclude bugs from having a security-critical
effect at modest cost. SCRIPTGARD’s positive information flow is
a way to separate trusted HTML template code from the (poten-
tially untrusted) variables at the output. This goal and conservative
treatment of non-constant data is consistent with other frameworks,
such as Django and Google Auto-escape, that aim to secure web
applications by construction. Many previous techniques have as-
sumed the specifications of untrusted input as complete.

Specifying all the sources of untrusted inputs is a serious prac-
tical challenge in complex systems and has not received due atten-
tion in research [22]. While identifying some sources of untrusted
data is acceptable for a bug-finding tool, for SCRIPTGARD miss-
ing untrusted data leads to missing attacks. Finally, we believe that
SCRIPTGARD, when used as an aid to human security analysis, is
useful because it suggests corrections of paths that are already san-
itizing data but in an inconsistent way.

13 2010/10/1



Browser Variations. Our implementation uses one specific
HTML5 compliant parser, the “Cloud Computing Client” devel-
oped at Microsoft Research. The Cloud Computing Client was de-
veloped from scratch to be as close to the HTML5 specification as
possible, using memory safe languages and runtime correctness en-
forcing techniques such as code contracts. However, this does not
guarantee that we will parse HTML identically to other browsers.
Variants among browsers are a notorious source of problems in san-
itization [38].

The problems in sanitization arising from browser variation fall
into two classes in our context. The first class consists of sanitiz-
ers which are not correct for a given context because of a browser
variation. This class falls under the question of correctness of the
sanitizer, which we have assumed as a basis of this work. Extensive
community effort [28, 38], internal scrutiny in industrial code as
well as research works [20, 1] have focussed on developing sanitiz-
ers for common HTML contexts that work across a majority of the
present browsers. The second class, however, arises if browsers dis-
agree on the parsing context for a specific untrusted string. In that
case, the correct sequence of sanitizers depends on which browser
specifically is in use.

To address these problems, we imagine but have not im-
plemented a design where multiple parsers are implemented in
SCRIPTGARD. At runtime, the specific parser to use can be deter-
mined by querying the User-Agent string of the browser. Of course,
browsers are free to lie about their User-Agent. Because this could
only lead to additional attacks on the browser, there is no incentive
for a user to do so.

7. Related Work
Related work falls into three broad categories. First, we discuss
mitigations, both browser and server based. Second, we discuss
bug finding in web applications using programming language tech-
niques. Finally, we describe previous work on sanitizer correctness.

7.1 Mitigations
Our work follows on previous attempts to build security mitiga-
tions into web browsers and web applications. Browser-based mit-
igations, such as Noncespaces, XSS Auditor, or “script accenting,”
make changes to the web browser that make it difficult for an ad-
versary’s script to run [26, 12, 2]. These approaches can be fast,
but they require all users to upgrade their web browsers, which is a
slow and unevenly distributed process.

A server side mitigation, in contrast, focuses on chang-
ing the web application logic instead of changing the browser.
BLUEPRINT is a recent example that describes mechanisms to
ensure the safe construction of the intended HTML parse tree
on the client using JavaScript in a browser-agnostic way [23].
These mechanisms, however, require a significant change to the
way applications emit HTML, which may require a significant ap-
plication and associated runtime library rewrite. This is a major
concern for legacy applications. While a manual enforcement of
BLUEPRINT’s primitives was shown possible, the issue of appli-
cability of these primitives to large existing applications is still at
large.

In contrast, SCRIPTGARD abstraction is closer to what legacy
applications implicitly already enforce — SCRIPTGARD focuses
on fortifying sanitizer-based defense. We detect mismatches be-
tween sanitizer and the context in which the sanitizer is used and
sketch a design that dynamically picks the correct sanitizer at run-
time, leveraging the fact that developers have already indicated the
points in need of sanitization. Our fine-grained incremental deploy-
ment does not, therefore, require a major output rewriting engine.

XSS-GUARD [4] proposes techniques to learn allowed scripts
from unintended scripts. The allowed scripts are then whitelisted

to filter out unintended scripts at runtime. Like SCRIPTGARD, it
employs a web browser for its analysis, but the two approaches are
fundamentally different. SCRIPTGARD’s defense is based on au-
tomatic server-side sanitizer placement, rather than browser-based
whitelisting of scripting in server output. XSS-GUARD’s tech-
niques are intended for applications that allow rich HTML, where
designing correct sanitizers becomes challenging. SCRIPTGARD
target applications with fairly restrictive policies that have already
addressed the sanitizer-correctness issue; we empirically motivate
the orthogonal aspect of sanitizer placement.

Securifly translates bug specifications written in a special pro-
gram query to runtime instrumentation that detects these bugs [24].
Just as in SCRIPTGARD, this approach allows making guarantees
about runtime correctness, relative to the correctness of the specifi-
cation and the instrumentation. Our approach, however, uses a web
browser implementation to allow us to reason about the browser
parsing context as well as the server state. This allows us to tackle
sanitizer placement problems that can not be reasoned about using
the server code alone.

7.2 Software Security Analysis of Web Applications
Software security focuses on using program analysis to find se-
curity critical bugs in applications. The WebSSARI project pio-
neered these approaches for web applications. WebSSARI unsound
static and dynamic analysis in the context of analyzing PHP pro-
grams [17]. WebSSARI has successfully been applied to find many
SQL injection and cross-site scripting vulnerabilities in PHP code.
Several projects that came after WebSSARI improve on the quality
of static analysis for PHP [35, 19].

The Griffin project proposes a scalable and precise sound static
and runtime analysis techniques for finding security vulnerabilities
in large Java applications [21, 24]. Based on a vulnerability descrip-
tion, both a static checker and runtime instrumentation is generated.
Static analysis in Griffin also reduces the overhead in most cases.
The runtime system allows vulnerability recovery by applying user-
provided sanitizers on execution paths that lack them. Multiple
other systems for information flow tracking have been proposed,
including Haldar et al.for Java [13] and Pietraszek et al. [29] and
Nguyen-Tuong et al.for PHP [27].

Typically information flow systems use negative tainting to
specifically identify untrusted data in web applications applica-
tions [36, 24, 21, 22]. While negative taint is preferable for finding
bugs, it is less desirable for mitigations because it requires speci-
fying all sources of taint. This can be challenging in a large legacy
application. Our information flow design distinguishes itself from
previous work in that it tracks positive taint, which is conservative
default fail-close approach, and side-steps identifying all sources of
taint.

A second distinguishing factor of our work is its focus on both
browser and server state. Many previous systems focus purely
on server state [21, 35, 19], Web 2.0 applications that make use
of AJAX often fetch both data and JavaScript code from many
sources. As a result, the final HTML is only available within the
browser. Moreover, when executable content is transferred to the
client as XML or JSON and composed into displayable HTML
by JavaScript, previously proposed on-the-wire rewriting tactics
become ineffective [37, 30].

To address this problem, multiple proposals have focused on
changing the browser to add additional isolation mechanisms or
programming abstractions [18, 11, 37, 16, 25]. A common theme is
to give web developers isolation mechanisms similar to processes
in operating systems. As we argued above, these approaches are
important, but they require users to upgrade their web browsers
while SCRIPTGARD does not.
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Erlingsson et al.make an end-to-end argument for the client-
side enforcement of security policies that apply to client behav-
ior [11, 25]. Their proposed mechanisms use server-specified,
programmatic security policies that allow for flexible client-side
enforcement, even to the point of runtime data tainting. Unlike
SCRIPTGARD, their technique can enforce some necessary, but
not sufficient conditions for establishing distributed application in-
tegrity. Our approach can provide runtime guarantees, relative to
the soundness of our browser implementation and our instrumenta-
tion. We do not, however, push enforcement into the browser itself.

7.3 Sanitizer Correctness
Correctness for a web sanitizer means that the sanitizer is present
where needed, and that the sanitizer is correct for the given context.
Livshits et al. developed methods for determing which functions
in a program play the role of sanitizer [22]. Their Merlin system
is also capable of detecting missing sanitizers. Balzarotti et. al
show that sanitizer routines are often incorrect, using symbolic test
generation techniques [1]. The Cross-Site Scripting Cheat Sheet
shows over two hundred examples of strings that exercise common
corner cases of web sanitizers [31]. Hooimeijer et al. focus on
domain specific languages for writing sanitizers [15].

As we argued previously, SCRIPTGARD’s analysis is comple-
mentary to this work. Sanitizers may be present, and they may be
functionally correct for contexts they are intended to be used in.
Incorrect placement, however, can introduce errors. To our knowl-
edge, this class of errors has not been previously identified, nor
have techniques to eliminate these errors been described.

8. Conclusions
SCRIPTGARD is motivated by the desire to prevent inconsistent
sanitization from adversely affecting large web applications. Our
approach is a combination of testing and low-overhead runtime
recovery.

We evaluate both the testing approach as well as runtime auto-
sanitization on a large-scale web application with over 400,00 lines
of code. We performed our security testing on a set of 53 large web
pages, each containing 350–900 DOM nodes. These pages were
produced by 7 components of the test platform. We found 285
multiple-encoding issues, as well as 1207 instances of inconsis-
tent sanitizers. SCRIPTGARD provides provable guarantees that the
right sanitizer will be picked at runtime, avoiding all these issues.
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